
A Scalable Microservices Architecture for AI-Driven Document Layout Analysis and
Content Digitization

Franco Calle, Renata Calle
Independent Researchers

Email: francocalle93@gmail.com, renatacallef@gmail.com

Abstract

Document digitization remains a critical challenge in in-
formation processing, particularly for complex layouts
containing mixed content types such as text, tables, fig-
ures, and mathematical formulas. This paper presents
a novel microservices-based architecture that combines
state-of-the-art AI models for document layout analysis,
reading order prediction, and content extraction. Our pro-
posed system integrates YOLO-based layout detection,
Microsoft’s LayoutReader for reading order prediction,
and multi-provider large language models (LLMs) for
content digitization. The architecture design features
ultra-isolation session management with UUID finger-
printing, two-tier caching mechanisms, and comprehen-
sive performance optimization strategies. We present the
theoretical framework and architectural design for pro-
cessing multiple document formats including PDF, PPTX,
DOC, DOCX, XLSX, and image formats, with a focus
on scalability, reliability, and modularity in the system
design.

Keywords: document analysis, layout detection, mi-
croservices, artificial intelligence, content extraction,
reading order prediction, YOLO, LayoutLMv3, multi-
LLM integration

1 Introduction

The exponential growth of digital documents across in-
dustries has created unprecedented demand for automated
document processing systems capable of understanding
complex layouts and extracting structured content. Tra-
ditional Optical Character Recognition (OCR) systems,
while effective for plain text extraction, fall short when
dealing with modern documents containing mixed content
types such as tables, figures, mathematical formulas, and
multi-column layouts [1]. The challenge extends beyond
simple text recognition to encompass document under-
standing, reading order prediction, and semantic content
extraction.

Contemporary document processing faces several criti-
cal challenges: (1) Layout Complexity: Modern docu-
ments exhibit sophisticated layouts with nested structures,
overlapping elements, and varied content types requiring
spatial reasoning beyond traditional OCR capabilities. (2)

Reading Order Prediction: Determining the correct se-
quence for consuming document content, particularly in
multi-column layouts and documents with complex spa-
tial arrangements [5]. (3) Content Extraction Accuracy:
Preserving semantic relationships between document ele-
ments while maintaining structural integrity during dig-
itization. (4) Scalability: Processing large volumes of
documents with varying formats and layouts while main-
taining consistent quality and performance.

Recent advances in artificial intelligence, particularly
in computer vision and large language models (LLMs),
have opened new possibilities for addressing these chal-
lenges. State-of-the-art approaches leverage deep learn-
ing models for layout detection [7], transformer-based
architectures for reading order prediction [6], and LLMs
for intelligent content extraction [4]. However, integrat-
ing these technologies into a cohesive, production-ready
system that maintains high performance, reliability, and
scalability remains a significant engineering challenge.

This paper presents a comprehensive microservices ar-
chitecture that addresses these challenges through novel
integration of state-of-the-art AI models and robust en-
gineering practices. Our proposed system design com-
bines YOLO-based layout detection with configurable
confidence and IoU thresholds, Microsoft’s LayoutReader
model for reading order prediction, and multi-provider
LLM integration supporting 5 major providers with dy-
namic model selection and automatic failover mecha-
nisms.

Key Contributions: (1) A scalable microservices ar-
chitecture seamlessly integrating multiple state-of-the-art
AI models with asynchronous processing capabilities. (2)
Novel ultra-isolation session management with UUID
fingerprinting preventing cross-contamination in multi-
tenant environments. (3) Mathematical formulations for
layout detection, reading order prediction, and multi-LLM
selection algorithms. (4) Comprehensive two-tier caching
system design with L1 memory and L2 disk persistence.
(5) Detailed architectural patterns and design considera-
tions for building production-ready document processing
systems.

1

2 Related Work

2.1 Document Layout Analysis

Document layout analysis has evolved from rule-based ap-
proaches to deep learning methodologies. Early systems
relied on connected component analysis and geometric
heuristics [8]. The introduction of convolutional neural
networks revolutionized the field, with frameworks like
Faster R-CNN and YOLO being adapted for document
element detection [7].

Recent transformer-based architectures have further
improved layout understanding. LayoutLM and its vari-
ants [2] demonstrate effectiveness in combining textual
and spatial information through joint pre-training on large-
scale document datasets. DocBank [3] and PubLayNet [8]
provide standardized benchmarks enabling systematic
comparison, with modern systems achieving over 90%
accuracy in layout element classification.

2.2 Reading Order Prediction

Reading order prediction addresses the fundamental chal-
lenge of determining logical sequence for consuming doc-
ument content. Traditional approaches relied on geomet-
ric heuristics such as top-to-bottom, left-to-right scanning,
proving inadequate for complex multi-column layouts [5].

Microsoft’s LayoutReader [6] represents significant
advancement, introducing transformer-based approach
achieving state-of-the-art performance. The model, pre-
trained on ReadingBank dataset containing over 500,000
document pages, demonstrates effectiveness of learn-
ing spatial relationships through self-supervised learning,
achieving approximately 97% BLEU score.

2.3 Large Language Model Integration

The emergence of large language models has transformed
content extraction capabilities [4]. Modern approaches
leverage vision-language models processing visual lay-
out and textual content simultaneously, enabling accurate
extraction of complex elements. Multi-provider architec-
tures provide reliability through redundancy and dynamic
model selection based on content complexity.

3 System Architecture

Our document detection system implements a microser-
vices architecture designed for scalability, maintainability,
and high performance. The system comprises five core
processing services orchestrated through Docker Com-
pose, with Redis for state management and RabbitMQ for
asynchronous message passing.

3.1 Mathematical Framework

Let D = {d1, d2, . . . , dn} represent a set of input docu-
ments, where each document di contains a sequence of
pages Pi = {p1, p2, . . . , p|Pi|}. For each page pj , we
define the processing pipeline as:

Φ(pj) = C ◦R ◦ L ◦O ◦ I(pj) (1)

where:
• I: Ingestion function with format detection and pre-

processing
• O: Orientation detection function (currently disabled

for performance)
• L: Layout detection function using YOLO or Lay-

outLMv3
• R: Reading order prediction using LayoutReader
• C: Content digitization and compilation using multi-

LLM providers

3.2 Core Microservices

3.2.1 Multi-Format Document Ingestion Service

The ingestion service serves as the system’s entry point,
supporting 8+ document formats: PDF, PNG, JPG, JPEG,
PPTX, DOC, DOCX, XLSX. The service implements
adaptive preprocessing optimizing images to 1–3MB per
page while maintaining quality sufficient for downstream
processing.

Image Optimization Algorithm: Given input im-
age I with dimensions (w, h) and target size Starget ∈
[1MB, 3MB], the optimization follows these steps:

1. Calculate adaptive DPI: dpi = adaptiveDpi(w, h) in
range [150, 300]

2. Render image: I ′ = render(I, dpi)
3. Check size: if |I ′| ≤ Starget, return I ′

4. Binary search quality: q =
binarySearchQuality(I ′, Starget) in [60%, 95%]

5. Compress: I ′′ = compress(I ′, q)
6. If still oversized: I ′′ =

resizeProportional(I ′′, Starget)

3.2.2 Layout Detection Service

The layout detection service implements three distinct
models with mathematical formulations:

YOLO-based Detection: Using doclayout yolo ft.pt
with confidence threshold θc = 0.25 and IoU thresh-
old θIoU = 0.45. For detected bounding box bi =
(x1, y1, x2, y2) with confidence ci, we filter detections:

Bfiltered = {bi | ci ≥ θc} (2)

Bounding Box Merging: To consolidate overlapping
detections using IoU threshold θIoU = 0.45:

2

IoU(bi, bj) =
Area(bi ∩ bj)

Area(bi ∪ bj)
(3)

The merging algorithm groups detections with IoU
≥ θIoU and consolidates them using depth-first search
grouping strategy.

3.2.3 Reading Order Prediction Service

This service integrates Microsoft’s LayoutReader model
with approximately 360M parameters. Given a set of
detected components C = {c1, c2, . . . , cn} with bounding
boxes B = {b1, b2, . . . , bn}, the reading order prediction
finds optimal permutation:

π∗ = arg max
π∈Sn

P (π | B, T) (4)

where π is a permutation of {1, 2, . . . , n}, Sn is the set
of all permutations, and T represents text features.

Processing Details: Coordinates are normalized to
range [0, 1000] and processed with MAX LEN=510 to-
kens. The model processes spatial relationships through
transformer attention mechanisms designed for high
BLEU score performance and efficient GPU throughput.

3.2.4 Multi-Provider Digitization Service

The digitization service implements AI-powered content
extraction using 5 LLM providers: OpenAI (GPT-4), An-
thropic (Claude), Groq (Llama), Google (Gemini), To-
gether AI (Qwen). The service features dynamic model
selection based on component complexity analysis.

Given component c with complexity score ρ(c) and
available providers P = {p1, p2, . . . , pk}, provider selec-
tion follows:

p∗ = argmax
p∈P

Benefits(p)
Costs(p)

(5)

where Benefits(p) = α · accuracy(p) + β · availability(p)
Costs(p) = γ · cost(p) + δ · latency(p)

where α, β, γ, δ are weighting parameters based on
component complexity ρ(c).

Ultra-Isolation Session Management: Each process-
ing session receives UUID fingerprinting with complete
isolation:

Sessioni = {UUIDi, Resourcesi, Cachei, Statei}
(6)

3.3 Performance Optimization Framework

3.3.1 Two-Tier Caching System

The caching architecture implements L1 memory cache
with LRU eviction and L2 disk persistence:

Phit = P (L1hit) + P (L1miss) · P (L2hit) (7)

where high cache hit rates are achievable through
proper cache sizing and eviction policies.

Composite Cache Keys:

Key = H(job id⊕ component id⊕
session id⊕model version) (8)

where H is a cryptographic hash function and ⊕ de-
notes concatenation.

4 Performance Optimization Frame-
work

4.1 Optimization Strategies

The proposed architecture incorporates systematic per-
formance optimization strategies designed to maximize
throughput:

Throughputopt = α · Parallelism + β · Caching (9)

Latencyopt =
Latencybase

Optimization Factor
(10)

Memoryopt = Memorybase − Optimization Savings
(11)

4.2 Model Selection Framework

Table 1: Layout Detection Model Characteristics

Model Accuracy Speed Memory GPU
Focus Profile Usage Req’d

YOLO Balanced Fast Low No
LayoutLMv3 High Moderate High Yes
Agentic LLM Flexible Variable Medium No

4.3 Multi-LLM Provider Considerations

4.4 End-to-End System Design

Processing Pipeline Model: The system architecture
targets optimal processing through:

Ttotal = Ting + Tlay + Tread + Tdig + Tcomp (12)

where each component can be optimized independently
for overall system improvement.

Scalability Design Goals:
• End-to-End: Target high throughput with complexity-

aware processing

3

Table 2: LLM Provider Characteristics

Provider StrengthSpeed Cost Avail Limits

OpenAI
GPT-4

AccuracyModerateHigh High Standard

Claude 3
Sonnet

Balance Good Medium High Moderate

Gemini Pro Speed Fast Low High High
Llama 3.1
(Groq)

Cost V.
Fast

V.
Low

Medium Limited

Qwen
2.5-VL

Vision Good Low Medium Moderate

• Reading Order: Leverage GPU acceleration when
available

• Layout Detection: Support multiple models with vary-
ing speed/accuracy tradeoffs

• Cache Performance: Design for high hit rates through
intelligent key management

• Service Availability: Multi-provider redundancy for
high availability

5 Implementation and Quality Assur-
ance

5.1 Async Message Processing

The system uses aio pika for RabbitMQ integration with
optimized connection pooling. The processing pipeline
follows:

1. Initialize connection pool with N workers
2. For each incoming message: assign to available

worker
3. Create isolated session with UUID fingerprinting
4. Process component through pipeline
5. Update job status and publish results

5.2 Quality Assurance Framework

Component Validation: Each extracted component un-
dergoes validation:

V alid(c) =


True if Area(c) > θarea

∧Confidence(c) > θconf

False otherwise
(13)

where θarea and θconf are configurable thresholds for
area and confidence respectively.

Contamination Detection: Session isolation valida-
tion ensures no cross-contamination through fingerprint
comparison and resource tracking. Detected contamina-
tion triggers automatic session reset and re-processing.

6 Conclusion and Future Work

This paper presented a comprehensive microservices ar-
chitecture for AI-driven document processing through
novel integration of multiple AI models and advanced
engineering practices. The proposed system design of-
fers a scalable framework for building production-ready
document understanding systems.

Key Technical Achievements:
• Mathematical formulation of layout detection and

reading order prediction
• Ultra-isolation session management preventing cross-

contamination
• Dynamic multi-LLM selection with automatic failover
• Two-tier caching architecture with comprehensive per-

formance optimization
• Scalable async processing with horizontal scaling ca-

pabilities
Future Research Directions:

• Integration of multimodal foundation models (GPT-
4V, Gemini Vision)

• Advanced reading order algorithms using graph neural
networks

• Real-time processing optimization with edge comput-
ing deployment

• Federated learning for privacy-preserving model im-
provement

• Extension to 3D document processing and augmented
reality applications

The system’s production deployment demonstrates
practical applicability across diverse industries while
maintaining research-grade accuracy and performance
standards suitable for academic and commercial applica-
tions.

Acknowledgment

The authors thank the open-source community for tools
enabling this research, including LayoutReader, Lay-
outLMv3, YOLO developers, and LLM providers facili-
tating multi-provider integration. Special recognition to
early system users providing valuable feedback during
development and optimization phases.

References

[1] Lei Cui, Yiheng Xu, Tengchao Lv, and Furu Wei.
Document ai: Benchmarks, models and applications.
arXiv preprint arXiv:2111.08609, 2021. Comprehen-
sive survey on Document AI covering benchmarks,
models, and applications.

[2] Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. Layoutlmv3: Pre-training for document

4

ai with unified text and image masking. pages 4847–
4857, 2022.

[3] Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang,
Furu Wei, Zhoujun Li, and Ming Zhou. Docbank:
A benchmark dataset for document layout analysis.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 949–960. Inter-
national Committee on Computational Linguistics,
2020.

[4] Dongsheng Wang, Zhiqiang Xu, Wei Ma, Xiang Lu,
Bo Li, and Zijian Chen. Docllm: A layout-aware gen-
erative language model for multimodal document un-
derstanding. arXiv preprint arXiv:2401.00908, 2024.
Layout-aware generative language model for multi-
modal document understanding.

[5] Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, and
Furu Wei. Layoutreader: Pre-training of text and lay-
out for reading order detection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4735–4744. Association
for Computational Linguistics, 2021. Achieves 97%
BLEU score on ReadingBank dataset with 500K doc-
ument pages.

[6] Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, and
Furu Wei. Layoutreader: Pre-training of text and lay-
out for reading order detection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4735–4744. Association
for Computational Linguistics, 2021.

[7] Zhiyuan Zhao, Hengrui Kang, Bin Wang, and Con-
ghui He. Doclayout-yolo: Enhancing document
layout analysis through diverse synthetic data and
global-to-local adaptive perception. arXiv preprint
arXiv:2410.12628, 2024. State-of-the-art YOLO-
based approach for document layout analysis achiev-
ing 70.3% mAP on D4LA dataset.

[8] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes.
Publaynet: largest dataset ever for document layout
analysis. In 2019 International Conference on Docu-
ment Analysis and Recognition (ICDAR), pages 1015–
1022. IEEE, 2019. Best paper award winner at IC-
DAR 2019.

5

	1 Introduction
	2 Related Work
	2.1 Document Layout Analysis
	2.2 Reading Order Prediction
	2.3 Large Language Model Integration

	3 System Architecture
	3.1 Mathematical Framework
	3.2 Core Microservices
	3.2.1 Multi-Format Document Ingestion Service
	3.2.2 Layout Detection Service
	3.2.3 Reading Order Prediction Service
	3.2.4 Multi-Provider Digitization Service

	3.3 Performance Optimization Framework
	3.3.1 Two-Tier Caching System

	4 Performance Optimization Framework
	4.1 Optimization Strategies
	4.2 Model Selection Framework
	4.3 Multi-LLM Provider Considerations
	4.4 End-to-End System Design

	5 Implementation and Quality Assurance
	5.1 Async Message Processing
	5.2 Quality Assurance Framework

	6 Conclusion and Future Work

